Sequence analysis using logic regression.
نویسندگان
چکیده
Logic Regression is a new adaptive regression methodology that attempts to construct predictors as Boolean combinations of (binary) covariates. In this paper we use this algorithm to deal with single-nucleotide polymorphism (SNP) sequence data. The predictors that are found are interpretable as risk factors of the disease. Significance of these risk factors is assessed using techniques like cross-validation, permutation tests, and independent test sets. These model selection techniques remain valid when data is dependent, as is the case for the family data used here. In our analysis of the Genetic Analysis Workshop 12 data we identify the exact locations of mutations on gene 1 and gene 6 and a number of mutations on gene 2 that are associated with the affected status, without selecting any false positives.
منابع مشابه
Predictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models
The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...
متن کاملExtension of Logic regression to Longitudinal data: Transition Logic Regression
Logic regression is a generalized regression and classification method that is able to make Boolean combinations as new predictive variables from the original binary variables. Logic regression was introduced for case control or cohort study with independent observations. Although in various studies, correlated observations occur due to different reasons, logic regression have not been studi...
متن کاملLogic regression and its application in predicting diseases
Regression is one of the most important statistical tools in data analysis and study of the relationship between predictive variables and the response variable. in most issues, regression models and decision tress only can show the main effects of predictor variables on the response and considering interactions between variables does not exceed of two way and ultimately three-way, due to co...
متن کاملSeismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملIdentification of Genetic Polymorphism Interactions in Sporadic Alzheimer’s Disease Using Logic Regression
Objectives: Genetic polymorphism interactions are among the important factors in affliction with complex diseases like Alzheimer’s disease. The important goal of genetic association studies is to identify a combination of polymorphisms and measure their importance in increasing the risk of occurrence of such diseases. In this study, feature selection approach of logic regression was used to ide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetic epidemiology
دوره 21 Suppl 1 شماره
صفحات -
تاریخ انتشار 2001